Clock

Rabu, 04 November 2009


Gerak lurus
Gerak lurus adalah gerak suatu obyek yang lintasannya berupa garis lurus. Dapat pula jenis gerak ini disebut sebagai suatu translasi beraturan. Pada rentang waktu yang sama terjadi perpindahan yang besarnya sama.
Pengelompokkan
Gerak lurus dapat dikelompokkan menjadi gerak lurus beraturan dan gerak lurus berubah beraturan yang dibedakan dengan ada dan tidaknya percepatan.
[Gerak lurus beraturan
Gerak lurus beraturan (GLB) adalah gerak lurus suatu obyek, dimana dalam gerak ini kecepatannya tetap atau tanpa percepatan, sehingga jarak yang ditempuh dalam gerak lurus beraturan adalah kelajuan kali waktu.

dengan arti dan satuan dalam SI:
· s = jarak tempuh (m)
· v = kecepatan (m/s)
· t = waktu (s)
Gerak lurus berubah beraturan
Gerak lurus berubah beraturan (GLBB) adalah gerak lurus suatu obyek, di mana kecepatannya berubah terhadap waktu akibat adanya percepatan yang tetap. Akibat adanya percepatan rumus jarak yang ditempuh tidak lagi linier melainkan kuadratik.


dengan arti dan satuan dalam SI:
· v0 = kecepatan mula-mula (m/s)
· a = percepatan (m/s2)
· t = waktu (s)
· s = Jarak tempuh/perpindahan (m)
Pengelompokkan
Gerak lurus dapat dikelompokkan menjadi gerak lurus beraturan dan gerak lurus berubah beraturan yang dibedakan dengan ada dan tidaknya percepatan.
Gerak lurus beraturan
Gerak lurus beraturan (GLB) adalah gerak lurus suatu obyek, dimana dalam gerak ini kecepatannya tetap atau tanpa percepatan, sehingga jarak yang ditempuh dalam gerak lurus beraturan adalah kelajuan kali waktu.

dengan arti dan satuan dalam SI:
· s = jarak tempuh (m)
· v = kecepatan (m/s)
· t = waktu (s)
Gerak lurus berubah beraturan
Gerak lurus berubah beraturan (GLBB) adalah gerak lurus suatu obyek, di mana kecepatannya berubah terhadap waktu akibat adanya percepatan yang tetap. Akibat adanya percepatan rumus jarak yang ditempuh tidak lagi linier melainkan kuadratik.


dengan arti dan satuan dalam SI:
· v0 = kecepatan mula-mula (m/s)
· a = percepatan (m/s2)
· t = waktu (s)
· s = Jarak tempuh/perpindahan (m)
Besaran gerak melingkar
Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah , dan atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan berturut-turut dengan , dan .
Besaran gerak lurus dan melingkar
Gerak lurus
Gerak melingkar
Besaran
Satuan (SI)
Besaran
Satuan (SI)
poisisi
m
sudut
rad
kecepatan
m/s
kecepatan sudut
rad/s
percepatan
m/s2
percepatan sudut
rad/s2
-
-
perioda
s
-
-
radius
m
[Turunan dan integral
Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.



[Hubungan antar besaran sudut dan tangensial
Antara besaran gerak linier dan melingkar terdapat suatu hubungan melalui khusus untuk komponen tangensial, yaitu

Perhatikan bahwa di sini digunakan yang didefinisikan sebagai jarak yang ditempuh atau tali busur yang telah dilewati dalam suatu selang waktu dan bukan hanya posisi pada suatu saat, yaitu

untuk suatu selang waktu kecil atau sudut yang sempit.
Jenis gerak melingkar
Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya , yaitu:
· gerak melingkar beraturan, dan
· gerak melingkar berubah beraturan.
Gerak melingkar beraturan
Gerak Melingkar Beraturan (GMB) adalah gerak melingkar dengan besar kecepatan sudut tetap. Besar Kecepatan sudut diperolah dengan membagi kecepatan tangensial dengan jari-jari lintasan

Arah kecepatan linier dalam GMB selalu menyinggung lintasan, yang berarti arahnya sama dengan arah kecepatan tangensial . Tetapnya nilai kecepatan akibat konsekuensi dar tetapnya nilai . Selain itu terdapat pula percepatan radial yang besarnya tetap dengan arah yang berubah. Percepatan ini disebut sebagai percepatan sentripetal, di mana arahnya selalu menunjuk ke pusat lingkaran.

Bila adalah waktu yang dibutuhkan untuk menyelesaikan satu putaran penuh dalam lintasan lingkaran , maka dapat pula dituliskan

Kinematika gerak melingkar beraturan adalah

dengan adalah sudut yang dilalui pada suatu saat , adalah sudut mula-mula dan adalah kecepatan sudut (yang tetap nilainya).
Gerak melingkar berubah beraturan
Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut tetap. Dalam gerak ini terdapat percepatan tangensial (yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial ).

Kinematika GMBB adalah



dengan adalah percepatan sudut yang bernilai tetap dan adalah kecepatan sudut mula-mula.
Integral
Integral adalah kebalikan dari proses diferensiasi. Integral ditemukan menyusul ditemukannya masalah dalam diferensiasi di mana matematikawan harus berpikir bagaimana menyelesaikan masalah yang berkebalikan dengan solusi diferensiasi. Lambang integral adalah
Integral terbagi dua yaitu integral tak tentu dan integral tertentu. Bedanya adalah integral tertentu memiliki batas atas dan batas bawah. Integral tertentu biasanya dipakai untuk mencari volume benda putar dan luas.
Mencari nilai integral
Substitusi
Contoh soal:
Cari nilai dari:




Integrasi parsial
Integral parsial menggunakan rumus sebagai berikut:

Contoh soal:
Cari nilai dari:

Gunakan rumus di atas



Substitusi trigonometri
Bentuk
Gunakan
Contoh soal:
Cari nilai dari:










Cari nilai dari: dengan menggunakan substitusi





Masukkan nilai tersebut:



Nilai sin A adalah


Integrasi pecahan parsial
Contoh soal:
Cari nilai dari:




Akan diperoleh dua persamaan yaitu dan
Dengan menyelesaikan kedua persamaan akan diperoleh hasil




Rumus integrasi dasar
Umum
(n ≠ -1)


(a adalah konstanta)

(a > 0, a ≠ 1)

Bilangan natural

] Logaritma

[sunting] Trigonometri










Turunan
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Untuk kegunaan lain dari Turunan, lihat Turunan (disambiguasi).
Turunan adalah suatu objek yang berdasarkan atau dibuat dari suatu sumber dasar. Arti ini penting dalam linguistik dan etimologi, dimana bentuk turunan dari suatu kata terbentuk dari beberapa kata dasar. Dalam kimia, turunan adalah senyawa yang terbentuk dari beberapa senyawa. Dalam finansial, turunan adalah kependekan dari jaminan turunan.
Dalam matematika, turunan dari suatu fungsi adalah satu dari dua konsep utama dalam kalkulus. Invers dari turunan disebut antiturunan atau integral tak tentu.
·
·
·
·
· y' adalah simbol untuk turunan pertama.
· y'' adalah simbol untuk turunan kedua.
· y''' adalah simbol untuk turunan ketiga.
simbol lainnya selain dan adalah dan
Gravitasi
Gravitasi adalah gaya tarik-menarik yang terjadi antara semua partikel yang mempunyai massa di alam semesta. Fisika modern mendeskripsikan gravitasi menggunakan Teori Relativitas Umum dari Einstein, namun hukum gravitasi universal Newton yang lebih sederhana merupakan hampiran yang cukup akurat dalam kebanyakan kasus.
Sebagai contoh, Bumi yang memiliki massa yang sangat besar menghasilkan gaya gravitasi yang sangat besar untuk menarik benda-benda disekitarnya, termasuk makhluk hidup, dan benda benda yang ada di bumi. Gaya gravitasi ini juga menarik benda-benda yang ada diluar angkasa, seperti bulan, meteor, dan benda angkasa laiinnya, termasuk satelite buatan manusia.
Beberapa teori yang belum dapat dibuktikan menyebutkan bahwa gaya gravitasi timbul karena adanya partikel gravitron dalam setiap atom.
Hukum Gravitasi Universal Newton
Hukum gravitasi universal Newton dirumuskan sebagai berikut:
Setiap massa titik menarik semua massa titik lainnya dengan gaya segaris dengan garis yang menghubungkan kedua titik. Besar gaya tersebut berbanding lurus dengan perkalian kedua massa tersebut dan berbanding terbalik dengan kuadrat jarak antara kedua massa titik tersebut.

F adalah besar dari gaya gravitasi antara kedua massa titik tersebut
G adalah konstanta gravitasi
m1 adalah besar massa titik pertama
m2 adalah besar massa titik kedua
r adalah jarak antara kedua massa titik
Dalam sistem Internasional, F diukur dalam newton (N), m1 dan m2 dalam kilograms (kg), r dalam meter (m), dsn konstanta G kira-kira sama dengan 6,67 × 10−11 N m2 kg−2.
Dari persamaan ini dapat diturunkan persamaan untuk menghitung Berat. Berat suatu benda adalah hasil kali massa benda tersebut dengan percepatan gravitasi bumi. Persamaan tersebut dapat dituliskan sebagai berikut: W = mg. W adalah gaya berat benda tersebut, m adalah massa dan g adalah percepatan gravitasi. Percepatan gravitasi ini berbeda-beda dari satu tempat ke tempat lain.
Hukum Kepler
Hukum Pertama


Figure 2: Hukum Kepler pertama menempatkan Matahari di satu titik fokus edaran elips.
"Setiap planet bergerak dengan lintasan elips, matahari berada di salah satu fokusnya."
Pada zaman Kepler, klaim diatas adalah radikal. Kepercayaan yang berlaku (terutama yang berbasis teori epicycle) adalah bahwa orbit harus didasari lingkaran sempurna. Pengamatan ini sangat penting pada saat itu karena mendukung pandangan alam semesta menurut Kopernikus. Ini tidak berarti ia kehilangan relevansi dalam konteks yang lebih modern.
Meski secara teknis elips yang tidak sama dengan lingkaran, tetapi sebagian besar planet planet mengikuti orbit yang bereksentrisitas rendah, jadi secara kasar bisa dibilang mengaproximasi lingkaran. Jadi, kalau ditilik dari observasi jalan edaran planet, tidak jelas kalau orbit sebuah planet adalah elips. Namun, dari bukti perhitungan Kepler, orbit orbit itu adalah elips, yang juga memeperbolehkan benda-benda angkasa yang jauh dari matahari untuk memiliki orbit elips. Benda-benda angkasa ini tentunya sudah banyak dicatat oleh ahli astronomi, seperti komet dan asteroid. Sebagai contoh Pluto, yang diobservasi pada akhir tahun 1930, terutama terlambat diketemukan karena bentuk orbitnya yang sangat elipse dan kecil ukurannya.
Hukum Kedua


Figure 3: Illustrasi hukum Kepler kedua. Bahwa Planet bergerak lebih cepat didekat matahari dan lambat dijarak yang jauh. Sehingga jumlah area adalah sama pada jangka waktu tertentu.
"Luas daerah yang disapu pada selang waktu yang sama akan selalu sama.",maka planet dengan jarak terdekat dengan matahari akan lebih cepat daripada planet yang jarak dengan matahari jauh.
.
Hukum Ketiga
Planet yang terletak jauh dari matahari memiliki perioda orbit yang lebih panjang dari planet yang dekat letaknya. Hukum Kepelr ketiga menjabarkan hal tersebut secara kuantitatif.

"Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari matahari."
Secara matematis:
dimana P adalah period orbit planet dan a adalah axis semimajor orbitnya.
Konstant proporsionalitasnya adalah semua sama untuk planet yang mengedar matahari.


Catatan :
-Aperilium :jarak terjauh antara sebuah planet dengan matahari
-Perilium :jarak terdekat antara sebuah planet dengan matahari